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Abstract

Despite the ecological importance of Trichodesmium spp. for the global oceanic nitro-
gen budget, there is limited information on their trace metal composition in field sam-
ples. We report dissolved (<0.22 um) metal concentrations measured in surface waters
(Ag, Cd, Co, Cu, Fe, Mo, Ni, P, Pb and V) and in the total and the intracellular pool (Ag,
Al, Cd, Co, Cu, Fe, Mn, Mo, Ni, P, Pb, V) of Trichodesmium populations collected in
the western subtropical North Atlantic Ocean (April-May 2003) within the influence of
the Amazon River plume. Dissolved element distributions were strongly influenced by
the River discharge, with concentrations of some elements varying directly (i.e. Cd, Mo
and V) or inversely (Ag, Co, Cu, Fe, Ni, P and Pb) with surface salinity. Intracellular
metal values to phosphorous ratios (mol:mol) for Cd, Co, Cu, Fe, Mn, Mo, Ni and V
ranged from 9.0x107° for Cd to 4.4x 107 for Fe. Although total metal composition was
significantly correlated with the intracellular content in the Trichodesmium colonies for
some elements (e.g., Co, Cu, V), metal pools in the phytoplankton did not co-vary with
the dissolved metal concentrations, suggesting that water column measurements may
not be good predictors of the intracellular metal concentrations. The impact of physi-
cal parameters and bioactive elements on biological processes in Trichodesmium such
as nitrogen fixation, carbon drawdown and biomass production was explored by using
a principal component analysis test (PCA). The analysis indicates that the biological
drawdown of dissolved inorganic carbon (DIC) by Trichodesmium seems to be influ-
enced by the internal content of Fe, Co, Cd, Cu and Mn, while nitrogen fixation seems
more influenced by the internal concentration of Mo, Ni and V and by the dissolved
phosphorous concentrations.
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1 Introduction

Marine cyanobacteria in the genus Trichodesmium are important N,-fixing organisms
in oligotrophic tropical and subtropical oceans, playing an important role in primary
production and in the new nitrogen budget (Karl et al., 1997; Capone et al., 1997;
LaRoche and Breitbarth, 2005; Westberry and Siegel, 2006). Therefore, important
advances have been made in understanding their geographical distribution and abun-
dance (e.g., Carpenter et al.,, 2004; Westberry and Siegel, 2006), nutrient require-
ments (Mills et al., 2004; Tuit et al., 2004; Kustka et al., 2002; Sanudo-Wilhelmy et
al., 2001) and the effect of environmental variables on bloom dynamics (Subramaniam
et al., 2008; Tovar-Sanchez et al., 2006). However, some critical issues still remain
largely unknown, such as evaluating the impact of the Amazon River on the cycling of
bioactive dissolved metals, and the impact of that river on intracellular metal levels in
field populations of Trichodesmium. Whereas total metal composition of field-collected
Trichodesmium colonies have been reported (Tovar-Sanchez et al., 2006), their inter-
nal metal pool and its relation to both the Amazon River plume and bloom dynamics
are still unknown. The internal metal pool represents the biological fraction (e.g., cel-
lular quota, Hassler and Schoemann, 2009; Tovar-Sanchez et al., 2003), and there-
fore quantification of this metal pool is important to understand the biochemical status
and/or the nutritional requirements of Trichodemium in the field. Furthermore, simulta-
neous measurements of bioactive trace metals in the intracellular and in the dissolved
water column pools could help us to better understand the processes and mechanisms
influencing the bioavailability of trace elements in the field.

In this study, we investigated the geographical distribution of dissolved elements in
surface waters both in and out of the influence of the Amazon River plume, and the
relationship of the plume with the internal metal composition of Trichodesmium. A
Principal Component Analysis (PCA) was carried out to try to identify the bioactive
trace elements and physical parameters (e.g., salinity, temperature, and mixed layer
depth) influencing nitrogen fixation, carbon drawdown and biomass production during
our study along the western boundary of the subtropical Atlantic Ocean.
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2 Methods
2.1 Sampling and analysis

Sampling was carried out during April-May 2003 under high riverine flow conditions
(DeMaster and Pope, 1996). A total of 42 locations, distributed along the western trop-
ical North Atlantic Ocean within and outside of the influence of the Amazon River (Fig.
1), were sampled in this study. Dissolved surface seawater samples were collected
from a “towed fish” deployed at 2 m below the surface and towed at about 5 knots dur-
ing sampling. Seawater was pumped through acid-cleaned Teflon tubing coupled to
a C-flex tubing (for the Cole-Parmer peristaltic pump head), filtered through an acid-
cleaned polypropylene cartridge filter (0.22 um, MSI, Calyx®), and collected in a 1L
LDPE acid-washed bottle. Seawater samples were acidified with sub-boiling quartz
distilled HCI (Q-HCI) to pH <1.5 and stored for at least 1 month prior to analysis. Metal
concentrations (Ag, Cd, Co, Cu, Fe, Mo, Ni, Pb, and V) were determined by Induc-
tively Coupled Plasma Mass Spectrometry (ICP-MS; ThermoFinigan, Element 2) after
pre-concentration with an ammonium1-pyrrolidine-dithiocarbamate/diethylammonium
diethyldithiocarbamate (APDC/DDDC) organic extraction (Bruland et al., 1985). Dis-
solved phosphorous concentrations were determined using the MAGIC method (Karl
and Tien, 1992).

Trichodesmium colonies were collected at a depth of ~5m using an acid-cleaned
all-plastic 100-micron mesh plankton net. Individual colonies were removed from the
acid-cleaned polyethylene net collector with a plastic inoculating loop in a class-100
laminar flow hood. Approximately 100 colonies were collected at each location and
stored frozen in Teflon vials until acid digestion. Samples were digested in Teflon
digestion vials using combined Q-HNO; (60%), Q-HCI (30%) and Q-HF (10%), and
heated on a hot plate until complete digestion (Sanudo-Wilhelmy et al., 2001; 2004).
Metal concentrations (Ag, Cd, Co, Cu, Fe, Mn, Mo, Ni, P and V) were determined by
ICP-MS in the acid-digests. Intracellular metal levels were determined after washing
a sub-sample of the field-collected Trichodesmium colonies with the oxalate reagent
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described by Tovar-Sanchez et al. (2003).

3 Results and discussion
3.1 Dissolved trace metal distributions

Dissolved metal (Ag, Cd, Co, Cu, Fe, Mo, Ni, Pb, V) and P concentrations measured in
surface waters during our study are reported in Table S1 in the auxiliary material sec-
tion. The impact of the Amazon River plume on the chemical composition of our sam-
pling locations is reflected in the salinity gradient (22.4—36.3) as well as in the dissolved
trace element distributions (Table S1). The influence of the river plume on metal distri-
butions was different for different metals. For example, the spatial gradient in dissolved
Ag, Co, Cu, Fe, Ni, Pb, and P (range of concentrations from low to high salinity: Ag,
15.50-8.43 pM; Co, 172.7-17.32 pM; Cu, 7.69-0.46 nM; Fe, 8.70-0.41 nM; Ni, 1.95—
0.88nM; Pb, 77.77-10.09 pM; P, 33.72—-2.31 nM) varied inversely with salinity (Figs. 2a
and S1a—f in the supplementary information), suggesting that the Amazon River plume
was the main source of these elements to the area of study during our sampling.

In contrast, the spatial distribution of dissolved Cd, Mo and V (range from low to high
salinity: Cd, 0.31-0.53 nM; Mo, 0.08-0.13 um; V, 20.92—-35.69 nM) varied directly with
salinity, suggesting that the Amazon River plume is not the source of these elements,
but rather the river input diluted their concentration in the Ocean (Figs. 2b and S1g-h
in the supplementary information).

To further establish the impact of the Amazon River plume on trace element distribu-
tions in our area of study, we collected water samples at 6 stations located in and out
of the plume in a 24 h period (salinity range: 22.4-30.9; stations 30-35 in Table S1).
The positive or negative slopes obtained for different elements in the linear regression
analysis with salinity confirms our results regarding the different influence of the river
on metal concentrations discussed above (insets in Figs. 2 and S1 in the supplemen-
tary information). Although our data is very limited, we used those metal-salinity linear
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regressions to obtain a first-order approximation of the “hypothetical” metal concentra-
tions at the low-salinity end-member of the Amazon River basin that would explain the
concentrations measured at the seawater end member assuming conservative estuar-
ine mixing (Table 1). Predicted metal concentrations at salinities 5 and 10 for Cd (0.10
and 0.16 nM), V (11.5 and 14.3nM), Co (145.5 and 130.0 pM) and Ni (2.4 and 2.3 nM)
were in good agreement with the concentrations measured by Seyler and Boaventura
(2003) in the upper Amazon River basin (Table 1). However, calculated concentra-
tions at those salinities for Mo (31.3—44.5nM) and Cu (16.1 and 13.6 nM) were higher
than those reported for the upper river basin (Mo: 0.5+ 0.3nM and 0.4 £ 0.2nM; Cu:
2.9+0.6nM and 6.7 £ 4.7 nM, at salinities 5 and 10 respectively). These discrepancies
are not totally unexpected for some metals, as inputs from shelf sediments could in-
crease metal levels within the high-salinity end-member of the Amazon plume. For
example, Breckel et al. (2005), reported that the Amazon shelf sediment is a sig-
nificant source of Mo to the ocean (with a estimated flux to the dissolved phase of
0.6x10’ mol/yr), which could cause an overestimation in our hypothetical low-salinity
end-member calculations, due to non-conservative excesses relative to simple mixing
of freshwater and seawater. Further studies will need to address all of those issues.

3.2 Trace element composition in Trichodesmium colonies

In order to investigate the influence of dissolved metal concentrations on the elemen-
tal composition in Trichodesmium, we analyzed two different metal pools, intracellular
and surface-scavenged, in the colonies collected at the western tropical North Atlantic
Ocean (Fig. 1). Total (intracellular + surface-scavenged; Ag, Al, Cd, Co, Cu, Fe, Mn,
Mo, Ni, P, Pb, V) and intracellular metal (Cd, Co, Cu, Fe, Mn, Mo, Ni, P, V) concentra-
tions measured in those colonies are reported in Table S1.

Element abundances in the intracellular fraction ranged from 0.49 + 0.27 mol per
colony for P to undetectable levels for Pb (P>Fe>V>Ni>Mo>Zn>Cu>Mn>Co>Cd>Pb)
(Table S1). The general concentration pattern seems to be consistent with the
metabolic requirements of Trichodesmium. For example, P and Fe are well known
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essential nutrients and considered limiting elements for N, fixation, oceanic primary
production and carbon dioxide sequestration (Sanudo-Wilhelmy et al., 2001; Mills et
al., 2004). The high internal content of Fe and Mo in the colonies is consistent with
the requirements for these elements by the nitrogenase enzyme for nitrogen fixation
(Tuit et al., 2004), and for other Fe proteins involved in aerobic nitrogen fixation in
Trichodesmium spp. (Zehr et al., 1997).

Explanation for the high internal concentrations of Ni and V are not totally clear.

In the case of Ni, recent research indicates that Ni can be a limiting factor for nitro-
gen fixation by Trichodesmium in oceanic regions (Ho and Hu, 2010). This could be
associated with the synthesis of Ni-superoxide dismutase by Trichodesmium to elimi-
nate oxygen radicals during the Mehler reaction, as previously shown in other marine
cyanobacteria (Dupont et al., 2008). Only two biological roles for V have been identi-
fied in cyanobacteria — as cofactors in V-nitrogenases and V-haloperoxidases (VHPOs;
Rehder 2008). To date, no marine cyanobacteria are known to possess V-nitrogenases
(Walmsley and Kennedy, 1991; Stal and Zehr, 2008). Though VHPO activity has so
far only been observed in eukaryotes (Winter and Moore 2009), several cyanobacterial
genomes (e.g. Synechoccus sp CC931, Acaryochloris marina MBIC11017) possess
genes both annotated in the IMG database as likely VHPOs and with high sequence
homology to characterized eukaryotic VHPOs (http://img.igi.doe.gov). A number of
other cyanobacteria, including the published Trichodesmium genome, contain an un-
characterized enzyme annotated as VHPO /acid phosphatase-related with predicted
peroxidase function. It is possible that the high V quotas measured in this study are
due to usage as a cofactor in this uncharacterized enzyme. Vanadate and phosphate
are also chemical analogs, which suggest that V incorporation could happen as part of
phosphate uptake (Ray et al., 1993).

The relative abundances of the extracellular metal pools (i.e. Cd>AI>V>Ag>Pb>Co
>Fe>Mo>Mn>P>Ni>Cu>Zn) follows the sequence characteristic of scavenged ele-
ments in the ocean, suggesting that extracellular metal composition is mediated by
process of surface-adsorption (Clegg and Sarmiento, 1989).

6529

BGD
7, 6523-6543, 2010

Influence of the
Amazon River

A. Tovar-Sanchez and
S. A. Sanudo-Wilhelmy

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/6523/2010/bgd-7-6523-2010-print.pdf
http://www.biogeosciences-discuss.net/7/6523/2010/bgd-7-6523-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://img.igi.doe.gov

10

15

20

25

In order to provide a comparison of the metal concentrations measured in the
colonies independent of cell volume, all of the Trichodesmium metal data were normal-
ized to the amount of phosphorous (mol:mol). Averages of intracellular metal: P were
3.56x107°, 4.7x107°, 7.4x107%,9.9x107%, 3.2x107%, 4.5x107% and 1.5x1072, for Cd,
Co, Mn, Cu, Mo, V, Ni and Fe, respectively (Table S1 and Fig. 3). While these intra-
cellular contents probably denote the biological requirements for these metals, others
elements like Mn was mostly found on the cell surface (~74%; Fig. 3), suggestive of a
lower cellular demand or lower bioaccumulation rates (Tang and Morel, 2006; Whitfield,
2001).

The range of intracellular metal concentrations measured in the Trichodesmium
colonies were in agreement with the metal:P range reported for other phytoplankton
species (i.e. diatoms Thalassiosira wissflogii and Ethmodiscus rex and gazellae),
grown under laboratory conditions (Table 2), suggesting similar metal requirements
among different marine phytoplankton species. The exceptions were Co and V whose
concentrations in Trichodesmium (Co, range: 0.01-0.14 mmol/mol; V, range: 5.0—
11.4 mmol/mol) were one and two order of magnitude higher than in T. wissflogii (Co,
range: 0.07—0.08 mmol/mol; V, range: 0.018-0.02 mmol/mol, respectively; Table 2). As
previously suggested, metal content of field populations of phytoplankton seems to be
more variable than those reported in laboratory culture studies (e.g., Tovar-Sanchez et
al., 2006).

We found significant linear correlations between the intracellular and the total fraction
for many elements measured in the colonies along the spatial gradient of dissolved
metal concentrations (Figure 4a—g). The best linear correlations were for Co (r2 =0.69,
p < 0.001), Cu (r*=0.58, p <0.001), V (r* =0.56, p < 0.001), Cd (> =0.51, p = 0.001)
and Mo (r2 =0.37, p =0.008). Despite the significant correlations between intracellular
and total metal pools in the field colonies, prediction of the intracellular pool using the
total metal content produced inaccurate results. Those correlations accounted, at the
most, for 59% of the measured intracellular Cu (even lower for the rest of the metals;
Cd, 17%; Co, 33%; Fe, 21%; Mo, 18%; Ni, 47% and V, 33%). With the exception of
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Cu, for which concentrations in the colonies seems to increase as water column levels
increased, in general, trace element concentrations measured in the Trichodesmium
did not show a clear trend with the dissolved concentrations. These results suggest
that the dissolved metal fraction was not a good predictor of the metal trends observed
in the colonies (Fig. 4). This is not totally unexpected, as the total dissolved pool
includes biologically unavailable metals.

We used a Principal Component Analysis (PCA) to try to indirectly determine
whether biological processes such as nitrogen fixation, carbon drawdown and biomass
production (measured as chlorophyll a) were influenced by trace elements as well as by
other physical variables such as salinity, temperature, and mixed layer depth (Fig. 5).
All of the biological data (i.e., nitrogen fixation and biological drawdown of DIC) as
well as mixed-layer depth measured during our sampling campaign were previously re-
ported by Subramaniam et al. (2008). In our PCA, 69% of total variance was explained
by the first two principal components. The first PC is defined by the positive relationship
of biomass (as chlorophyll a) and the biological drawdown of dissolved inorganic car-
bon (DIC) with the internal content of Fe, Co, Cd, Cu and Mn, in Trichodesmium. The
relationship of DIC with Fe and Mn is in agreement with the use of these elements by
different enzymes for carbon fixation (Webb et al., 2001; Klper et al., 2008; Tchernov
and Lipschultz, 2008). Copper is required by cytochrome oxidase, which has been sug-
gested to be involved in nitrogenase protection in Trichodesmium spp (Bergman et al.,
1993). Cobalt is required for the synthesis of cobalamin (vitamin B;,), as diazotrophs
seem to be major producers of this organic growth factor in oligotrophic waters (Bonnet
et al., 2010). Although Cd does not seem to be involved in any enzymatic process to fix
carbon in Trichodesmium, labile forms of Cd in seawater have been found complexed
to humic material derived from Trichodesmium, suggesting a previous internalization
mechanism (Jones et al., 1986).

The PCA also showed that nitrogen fixation during our sampling seems to be influ-
enced by mixed layer depth, instead of intracellular trace elements (PC2). Sanudo-
Wilhelmy et al. (2001) also reported that MLD was a major factor controlling nitrogen
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fixation in the subtropical Atlantic. The MLD can increase or decrease primary pro-
duction by supplying deep nutrients or decreasing the light penetration (Polovina et al.,
1995). Most of the dissolved metals also clustered in the PC2 with MLD and salin-
ity, suggesting the influence of the Amazon River and MLD on the dissolved fraction
of trace metals. In our area of study, salinity, together with temperature and density,
determine the MLD (de Boyer Montégut et al., 2004).

A negative trend was found between nitrogen fixation with dissolved P and the in-
ternal content of Mo, Ni and V in Trichodesmium, suggesting a biological use of these
elements during nitrogen fixation. N,-fixing diazotrophs may contribute to the low dis-
solved P concentrations in surface waters in this area, making P the element controlling
nitrogen fixation under high-Fe conditions (Sanudo-Wilhelmy et al., 2001). Recently,
Ho and Hu (2010) reported that, under low environmental Ni concentrations, growth
of Trichodesmium may be strongly limited. The minimum intracellular Ni to achieve
maximum growth rate has been estimated at about 5.0 mmol to mol of P (Ho and Hu,
2010), which is within the intracellular range quotes obtained in this study (from 0.7 to
11.2 mmol/mol to P; Table S1). On the other hand, while the use of Mo mediated by the
enzyme nitrogenase is well known, the biological role of V with the nitrogen metabolism
in Trichodesmium remains obscure.

In summary, our results show that dissolved trace elements in the Western Tropi-
cal North Atlantic are strongly influenced by the Amazon River. The concentrations of
dissolved Cd, Co, Ni and V appear to have a conservative behavior relative to simple
mixing of freshwater and seawater, while Mo and Cu behave non-conservatively. Anal-
ysis of internal and extracellular metal composition in Trichodesmium colonies revealed
positive correlations between the two pools and differences in abundances. While the
extracellular fraction results from a scavenging process, the internal content seems to
follow biological requirements of the cyanobacteria. With the exception of Cu, metal
content in Trichodesmium does not reflect the water column concentration. The PCA
analysis indicates that while chlorophyll a concentration and the biological drawdown of
dissolved inorganic carbon (DIC) by Trichodesmium are related to the internal content
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of Fe, Co, Cd, Cu and Mn, nitrogen fixation is limited by the internal concentration of
Mo, Ni and V and by dissolved P levels.

Supplementary material related to this article is available online at:
http://www.biogeosciences-discuss.net/7/6523/2010/
bgd-7-6523-2010-supplement.pdf.
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Table 1. Estimation of metal concentrations in the upper Amazon River Basin. We used the
regression equations obtained from metal concentrations measured along a wide salinity range
under the influence of the Amazon plume. Values are compared with concentrations reported
in the upper Amazon River Basin by Seyler and Boaventura, 2003.

This work Amazon Basin (Seyler and Boaventura, 2003)

Salinity  Extrapolated Negro River Tapajos River Juati River Japura River
concentration Nov99 May 01 Nov99 May 01 May 01 May 01

Mo (nM) 0 18.1
5 31.3 0.2 0.5
10 44,5 0.1 0.9 0.4 0.6

0 30.5
5 271
10 23.7

Ag (pM)

Cd (nM) 0 0.04
5 0.10 0.5 1.0
10

0.16 0.1 2.2 0.1 1.3

Pb (pM) 0 213.6
5 181.9
10 150.2

V (nM) 0 8.7
5 115 6.8 8.6
10

14.3 10.6 9.5 6.7 6.9

Fe (nM)

Co (pM) 0
5 145.5 652 1500
10 130.0 1160 2790 220 670

Ni (nM) 0
5 2.4 10.3 6.6
10 2.3 2.6 19.1 nd 1.8

Cu (nM) 0
5 16.1 3.4 10.0
10 13.6 3.1 3.1 2.0 3.5

nd: not determined; Ag, Pb and Fe were not analyzed by Seyler and Boaventura, 2003
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Table 2. Range values of metal concentrations normalized to P Trichodesmium and Diatoms.

' Trichodesmium 2 T. Wissflogii ° Ethmodiscus

Cd:P (umol/mol)

Co:P (mmol/mol)
Cu:P (mmol/mol)
Fe:P (mmol/mol)
Mn:P (mmol/mol)
Mo:P (mmol/mol)
Ni:P (mmol/mol)

V:P (mmol/mol)

9.0-76.5 6.6-8.3
0.01-0.14 0.07-0.08
0.19-1.78 0.08-0.09
3.0-44 4.4-43.6 6.5

0.02-2.96 3.1-4.1

1.0-10.2

0.7-11.2

5.0-11.4 0.018-0.02

' This work; 2 Tang and Morel, 2006;

3 Villareal et al., 2007
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Fig. 2. Geographical distribution of surface salinity (triangles), dissolved Cu (panel A —filled circles) and Mo (panel B
— filled circles) measured in the western boundary of the subtropical North Atlantic Ocean. The insets represent linear
regressions of the dissolved elements plotted against salinity for six different sampling times over a 24-hour period.

6540

Jadedq uoissnosiq | Jaded uoissnosiq

it

Jadeq uoissnasiq | Jaded uoissnosiq

BGD
7, 6523-6543, 2010

Influence of the
Amazon River

A. Tovar-Sanchez and
S. A. Sanudo-Wilhelmy

(8
S

o
2


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/6523/2010/bgd-7-6523-2010-print.pdf
http://www.biogeosciences-discuss.net/7/6523/2010/bgd-7-6523-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/

O
= (72}
85 {Cd:P . Co:P 1204 = BGD
T 7
6e-5 (28
8.0e-5
105 . e 7, 6523-6543, 2010
%! 4.0e-5 0
2e-5 Q
— l + 8
° o0 = Influence of the
Cu:P . . .
el . Fe:P toz - Amazon River
sous . T 2o = A. Tovar-Sanchez and
- : © S A Safiudo-Wilhelmy
0.0 + - 0 g
o
303 MNP Mo:P t S5
' - TWePsge
)
2e-3 ©
+ 8
4e-3 —J
° i ° | Conclsons  Reterences.
6
Ni:P P:colony Q
c
»
4e-3 + 2 g
o + . ° % 0 g
1.2e-5
. -
8.0e-3 —
0-0 i = 0.0 %
c
(2}
S
Fig. 3. Box-plots representing the scavenged (filled boxes) and intracellular (open boxes) metal pools measured in T _
field populations of Trichodesmium (all of them in mol:mol, with exception of P that is reported as nmol per colony). %
The solid line represents the median, the dimensions of the box delineates the 25th and 75th percentile confidence o)
@

intervals and the error bars show the 10th and 90th percentile confidence intervals.

6541

(8)
@

o
2


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/6523/2010/bgd-7-6523-2010-print.pdf
http://www.biogeosciences-discuss.net/7/6523/2010/bgd-7-6523-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/

9
»
o
2.50-4 204 = B G D
b[0] = -4.686-5 R-ng-:o.:s-usgn // b[0] = -1.426-5 Range: 21.3 - 172.7 pM/ wn
2ana PG e | B2 - e
/ 3 S 7, 6523-6543, 2010
© 1.5¢-4 5 1o
% 1.0e-4 P % 8e-5 g
H H ©
£ 5005 > 7 T4es D I fl f h
5950 ® = nfluence of the
o 0 1e-5  2e5  3e5  de5  Ses ° 00 50e-6 1.0e-5 1.5e-5 2.0e-5 2.50-5 3.0e-5 o Amazon River
Total Cd:P Total Co:P
e b[0] = 1.866-4 Range: 0.6-3.30M - 2 b[0] = -9.44e-4 Range: 0.4-4.8 ""// O A T S h d
203 hm;ti.su e te2 hm::.szz ° vz o . lovar-sanchez an
o ri=0 - L rr=0. s ~ .
= S. A. Sanudo-Wilhelmy
H H ®
E 3 @,
g g =
E = =}
© TilePage
0.0 2.0e-4 4.0e-4 6.0e-4 8.0e-4 1.0e-3 1.2e-3 0 2e-3 4e-3 6e-3 8e-3 1e-2 -O
Total Cu:P Total Fe:P (0]
@
1.2e-2 1.2e-2
b[1] = 2.60 8 el b[1] = 0.96 Range: 0.88 - 1.68 nM PR
I r?=0.37 pe o r*=0.028 //
2 2 T =.
: : ///»SL///”/// 7
= = ~7 o~ _ o c
- -4
A5 “F z
0.0 0.0 —_—
0.0 5.0e-4 1.0e-3 1.5e-3 2.0e-3 2.5e-3 3.0e-3 0 Ge-4 1e-3 2e-3 2e-3 3e-3 O
1.2e-2 6} -U
b[0] = -9.41e-4 P Q
; 8.0e-3 -
0.0 UJ
0.0 2.0e-3 4.0e-3 6.0e-3 8.0e-3 1.0e-2 1.2e-2 O
Total V:P (=
»
Fig. 4. Bubble plots showing the relationship between total and intracellular metal composition measured in the field 8
colonies of Trichodesmium (all metal data normalized to P). The size of the open circles is proportional to the dissolved - _
metal concentrations measured in surface waters where the colonies were collected. The solid line represents the %
linear regressions obtained among the two biological metal pools and the dashed lines are the 95th confidence limits. @
The range of dissolved metal levels measured during our study is also shown in each panel. @ ©
— BY

6542


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/7/6523/2010/bgd-7-6523-2010-print.pdf
http://www.biogeosciences-discuss.net/7/6523/2010/bgd-7-6523-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/

0.6
Ni
0.4 7 N,Fix
MLD Cu:P
Fe

0.2 1 M Cd
e v ° Cd:P chiazcol
)
=] Pb Co:P
S oo Co Fe:P
g o ————— Agc, DIC Bio
N S
(&)
o

-0.2 - Mn:P

0.4 - Ni:P Mo:P

-0.6 T T T

-0.4 -0.2 0.0 0.2 0.4

PC1 (46.0%)
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variance respectively.
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